Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/knowledge_accumulator/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Knowledge Accumulator | Telegram Webview: knowledge_accumulator/265 -
Telegram Group & Telegram Channel
Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/265
Create:
Last Update:

Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/265

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Knowledge Accumulator from sa


Telegram Knowledge Accumulator
FROM USA